5-01 nth Roots and Rational Exponents

Solve. Round to two decimal places, if necessary. $5x^3 = 320$

 $(x + 3)^4 = 24$

 $235 \ \#7, 9, 11, 13, 15, 17, 19, 21, 23, 27, 31, 35, 37, 39, 43, 47, 49, 51, 53, 55 = 20$

5-02 Properties of Rational Exponents and Radicals

Properties of Rational Exponents • $x^m \cdot x^n = x^{m+n}$ • $(xy)^m = x^m n^m$ • $(\frac{x}{x^n} = x^{m-n})$ • $(\frac{x}{y})^m = \frac{x^m}{y^m}$ • $x^{-m} = \frac{1}{x^m}$ • $x^{-m} = \frac{1}{x^m}$ (4³·w³)^{-1/3} $\frac{t}{t^{\frac{3}{4}}}$

Using Properties of Radicals

Product Property $\rightarrow \sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ Quotient Property $\rightarrow \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$

Adding and Subtracting Roots and Radicals

1. Simplify the _____

2. _____like terms

Writing Radicals in Simplest Form

- 1. Remove any _____ roots
- 2. Rationalize _____

242 #1-49 every other odd, 51, 55, 59, 63, 67, 71, 73, 81, 85, 87, 93, 95 = 25

5-02A Properties of Rational Exponents and Simplifying Radicals

Simplifying Radicals

Remove any _____ roots

Rationalize

∜64

 $\sqrt[3]{625x^5}$

5-02B Operations with Radicals

Using Properties of Radicals	
Product Property $\rightarrow \sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$	
Quotient Property $\rightarrow \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$	
$\sqrt[3]{25} \cdot \sqrt[3]{5}$	$\frac{\sqrt[3]{32x}}{\sqrt[3]{4x}}$
	V TA
Adding and Subtracting Roots and Radicals	
 Simplify the like terms 	
$5\left(4^{\frac{3}{4}}\right) - 3\left(4^{\frac{3}{4}}\right)$	3/04 3/0
5(44) - 3(44)	$\sqrt[3]{81} - \sqrt[3]{3}$
$2\sqrt[4]{6x^5} + x\sqrt[4]{6x}$	

242 #11, 13, 15, 17, 35, 37, 39, 41, 43, 51, 63, 65, 71, 89, 91 = 15

5-03 Graphing Radical Equations

The function $E(d) = 0.25\sqrt{d}$ approximates the number of seconds it takes a dropped object to fall *d* feet on Earth. The function $J(d) = 0.63 \cdot E(d)$ approximates the number of seconds it takes a dropped object to fall *d* feet on Jupiter. How long does it take a dropped object to fall 81 feet on Jupiter?

Let the graph of g be a horizontal stretch by a factor of 3, followed by a translation 6 units right of the graph of $f(x) = \sqrt[3]{x}$	
Write a rule for <i>g</i> .	

Graphing horizontal parabolas and circles

- 1. _____ the equation for *y*.
- 2. Create a _____.
- 3. _____ the points and _____ graph.

Graph $-\frac{1}{5}y^2 = x$. Identify the vertex and the direction that the parabola opens.

			•			
			7			

Graph $x^2 + y^2 = 49$. Identify the radius and the intercepts.
--

←							┝
			1	/			

5-04 Solving Radical Equations and Inequalities

Radical Equation			
Equation containing	g a		
Steps to Solve a	Radical Equation		
1			
2 3		is (or the reciprocal of the exponent)	
	your answers!!!		
$5 - \sqrt[4]{x} = 0$		$3x^{\frac{4}{3}} = 243$	
$\sqrt{2x+8} - 4 = 6$		$\sqrt{4x+28} - 3\sqrt{2x} = 0$	
m + 2 - <u>2 + 20</u>			
$x + 2 = \sqrt{2x + 28}$			

258 #1, 5, 9, 13, 17, 21, 25, 29, 31, 33, 37, 41, 45, 49, 51, 57, 61, 69, 77, 81 = 20

5-05 Performing Function Operations

Ways to combine functions		
 Addition: Subtraction: Multiplication: Division: 	(f+g)(x) = f(x) + g(x) (f-g)(x) = f(x) - g(x) $(f \cdot g)(x) = f(x) \cdot g(x)$ $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$	
Given $f(x) = 5\sqrt{x}$ and $g(x) = -(f+g)(x)$	(f-g)(x)	
$(f \cdot g)(x)$	$\left(\frac{f}{g}\right)(x)$	

Let $f(x) = 2x^3 + 4x^2 - 8x + 4$ and $g(x) = 3x^3 - 5x^2 + 6x - 9$. Find (f - g)(x) and state the domain. Then evaluate (f - g)(-1).

Let $f(x) = x^3$ and $g(x) = \sqrt{x}$. Find (fg)(x) and state the domain. Then evaluate (fg)(4).

Algebra 2 5-05 Name: ______ From 2010 to 2020, the populations (in thousands) of City M and City N can be modeled by $M(t) = 3.3t^3 + 12.1t^2 - 0.65t + 15.8$ and $N(t) = 2.5t^3 + 7.8t^2 + 0.41t + 11.9$, where *t* is the number of years since 2010. Find (M - N)(t) and explain what it represents.

265 #1, 3, 5, 7, 9, 15, 17, 21, 23, 25, 27, 29, 35, 37, 39 = 15

5-06 Composition of Functions

The function C(x) = 8.74x represents the cost (in dollars) of producing *x* shirts. The number of shirts produced in *t* hours is represented by x(t) = 84t. (a) Find C(x(t)). (b) Evaluate C(x(40)) and explain what it represents.

 $271\ \#1,\ 5,\ 9,\ 13,\ 17,\ 21,\ 25,\ 31,\ 33,\ 37,\ 43,\ 45,\ 47,\ 49,\ 51\ =\ 15$

5-07 Inverse of a Function

Properties of Inverses	
 <i>x</i> and <i>y</i> values are Graph is over the line _ 	
• You can use the Horizontal Line test to de	etermine if the of a function is also a function. Taph a function, then the inverse is a function.
Definition of inverses	
• Two functions are inverses if and only if _	and
Verify that $f(x) = 6 - 2x$ and $g(x) = \frac{6-x}{2}$ are inve	
Finding inverses	
 Finding inverses Inverses switch the <i>x</i> and <i>y</i>	
 Inverses switch the x and y	
• Inverses switch the <i>x</i> and <i>y</i>	or <i>y</i> .
 Inverses switch the x and y	or <i>y</i> .
 Inverses switch the x and y	or <i>y</i> .
 Inverses switch the <i>x</i> and <i>y</i> 1 <i>x</i> and <i>y</i> and for the inverse 	or <i>y</i> .

The power (in watts) of a lightbulb that has a resistance of 240 ohms is represented by $f(x) = 240x^2$, where x is the electric current of a lightbulb in amperes. Find and interpret $f^{-1}(60)$.

5-Review

Take this test as you would take a test in class. When you are finished, check your work against the answers. <u>5-01</u>

- 1. Evaluate $\sqrt[4]{150}$ using a calculator. Round the result to two decimal places if appropriate.
- 2. Evaluate $25^{\frac{3}{2}}$ using a calculator. Round the result to two decimal places if appropriate.
- 3. Solve $128 = 2(x 1)^6$

<u>5-02</u>

Simplify the expression. Assume all variables are positive.

- 4. $q^{\frac{7}{3}} \cdot q^{\frac{2}{3}}$
- 5. $\frac{x^{10}}{3x^6}$
- 6. $\sqrt[3]{81} + \sqrt[3]{24}$
- 7. $\sqrt[5]{64x^8y^{10}}$

<u>5-03</u>

Graph the function. Then state the domain and range.

- 8. $y = -2\sqrt[3]{x} + 1$
- 9. $y = \sqrt{x 2} 3$

10. Describe the transformations to get $g(x) = 2\sqrt[3]{x+3}$ from $f(x) = \sqrt[3]{x}$.

<u>5-04</u>

Solve the equation.

- 11. $\sqrt{x+2} = 10$
- 12. $2\sqrt[3]{3x-4} = 6$
- 13. $(x+3)^{\frac{2}{3}} 3 = 1$
- 14. $\sqrt{x+10} = x+1$
- 15. The volume of a sphere is given by $V = \frac{4}{3}\pi r^3$, where V is the volume and r is the radius of the sphere. Find the radius of a sphere with a volume 4 ft³.

<u>5-05</u>

Let f(x) = x + 2, and $g(x) = x^2$. Perform the indicated operation.

16. f(x) - g(x)

17. $f(x) \cdot g(x)$

<u>5-06</u>

18. f(g(x))

19. g(f(x))

<u>5-07</u>

Find the inverse of the function.

20. $f(x) = 64x^3$

21. $g(x) = x^{10} - 2, x \le 0$

22. $h(x) = 2(x)^4, x \ge 0$

Created by Richard Wright – Andrews Academy

Algebra 2 5-Review

Answers

- 1. 3.50
- 2. 125
- 3. -1, 3
- q^3 4.
- $\frac{x^4}{3}$ 5.
- 6. 5∛3
- $2xy^2\sqrt[5]{2x^3}$ 7. 8.

9. D: $x \ge 2$; R: $y \ge -3$

- 10. Vertical stretch by factor of 2 and translate 3 left
- 11. 98
- 12. $\frac{31}{3}$
- 13. 5
- 14. $\frac{-1+\sqrt{37}}{2} \left(\frac{-1-\sqrt{37}}{2}\right)$ is extraneous)
- 15. 0.98 ft
- 16. $-x^2 + x + 2$
- 17. $x^3 + 2x^2$
- 18. $x^2 + 2$
- 19. $x^2 + 4x + 4$
- 20. $y = \frac{\sqrt[3]{x}}{4}$
- 21. $y = -\sqrt[10]{x+2}$
- 22. $y = \sqrt[4]{\frac{x}{2}}$

Name: ___